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Abstract 
 
Traditionally, models used in air traffic control and 
flow management are based on simulating the 
trajectories of individual aircraft. This approach results 
in models with large number of states, which are 
intrinsically susceptible to errors and difficult for 
designing and implementing optimal strategies for 
traffic flow management. This paper outlines an 
innovative approach for the development of linear time 
variant dynamic traffic flow system models based on 
historical data about the behavior of air traffic. The 
resulting low-order, linear, robust models can be used 
both for the analysis and synthesis of traffic flow 
management techniques for current and future systems. 
 

1. Introduction 
 
Demand for air transportation has seen a six-fold 
increase in the past 30 years and estimates call for a 
strong average growth rate of 4.7% during the next 20 
years [1]. This increase in demand will put a further 
strain on the airports and sectors within the National 
Airspace System (NAS). The United States Congress 
has recognized the impact of unmet increased demand 
and has established a Joint Planning Office for creating 
and developing a Next Generation Air Transportation 
System to transform NAS operations. There are more 
than 40,000 commercial flights operated in the U. S. 
airspace alone on a typical day at the present time.  In 
order to ensure that this traffic moves smoothly and 
efficiently in the presence of disruptions caused by 
convective weather and airport conditions, innovative 
modeling and design methods are needed in traffic flow 
management (TFM).  
 
Today, air traffic flow prediction is done by 
propagating the trajectories of the proposed flights 
forward in time and using them to count the number of 
aircraft in a region of the airspace. The Center 
TRACON Automation System (CTAS) and the Future 
Automation Concepts Evaluation Tool (FACET) use 
this physics-based modeling approach for demand 
forecasting. The accuracy of these predictions is 
impacted by departure and weather uncertainties [2, 3]. 
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These trajectory-based models predict the behavior of 
the NAS adequately for short durations of up to 20 
minutes. With the short prediction accuracy, it is 
difficult, if not impossible, to make sound strategic 
decisions on air traffic management.  
 
A strategic TFM decision may involve rerouting all 
aircraft originating from the west coast, heading to 
airports on the east coast, to deal with anticipated 
stormy weather conditions near Chicago over the next 4 
hours. Strategic TFM is a hierarchical system consisting 
of large number of states, and operating over time 
scales extending from a few hours to 24 hours. As 
shown in Figure 1, the airspace in the United States is 
divided into 20 Centers in the continental United States 
plus one each in Alaska and Hawaii. The flow 
relationship between neighboring Centers is shown via 
links in Figure 1. For example, the figure shows that 
Kansas City Center (ZKC) receives and sends traffic to 
the Minneapolis Center (ZMP). Proper mixes of 
strategic and tactical flow controls initiated by the 
System Command Center and the 22 Control Centers 
accomplish TFM in the U. S. Some of the frequently 
used flow restrictions include ground stop, ground 
delay, metering (miles-in-trail and time based) and 
rerouting.  Dispatchers and air traffic coordinators at 
Airlines respond to these flow control actions by 
rescheduling and canceling flights, thus, changing flow 
patterns.  
 
Since strategic TFM requires control of flows of aircraft 
rather than individual aircraft, an aggregate model of 
traffic flow that does not use trajectories of individual 
aircraft is desirable. Strategic TFM can be substantially 
improved by the development of simpler, but more 
accurate models that allow the exploitation of different 
analysis and synthesis techniques from Systems 
Theory. Motivated by this objective, this paper 
describes a direct method for computing an aggregate 
model of air traffic flows from historical data. 
 
In the recent literature, an aggregate model for air 
traffic flows has been constructed by using trajectories 
of individual aircraft [4]. An alternative approach to 
modeling air traffic flows using flow relationship 
between adjacent Centers is described in Reference 5. 
The Linear Dynamic Systems Model (LDSM) in 
Reference 5 is built by counting the number of aircraft 
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entering a Center from an adjacent Center, number of 
aircraft leaving a Center for a neighboring Center and 
the numbers of aircraft landing and taking off within a 
Center. Input to this model consists of the number of 
departures. Results presented in Reference 5, assuming 
that departures follow a Poisson distribution, show that 
the resulting numbers of aircraft in the Centers also fit a 
Poisson distribution. The main limitation of the results 
in Reference 5 is that modeling departures from Poisson 
distributions (albeit a different one for each major hub 
airport) ignores the fact that departure counts vary 
significantly during the day as banks of aircraft arrive 
and depart major hub airports. Aircraft counts in the 
Centers, forecast by LDSM, can be improved 
significantly by accounting for the nominal departure 
rates as a function of time and augmenting them by 
modeling departure uncertainty about these nominal 
rates.  
 
In this paper, the basic time-invariant LDSM proposed 
in Reference 5 has been extended to a time-varying one. 
Instead of a single state transition matrix, several state 
transition matrices (one for each hour) were used to 
cover the entire prediction period. State transition 
matrices were computed using historical air traffic data. 
The resulting model was then driven by average 
departure rates, also derived from historical air traffic 
data, to predict aircraft counts in the 23 airspace 
regions. These 23 regions consisted of 20 Centers in the 
continental United States, one each covering Hawaii 
and Alaska, and one for the international airspace.  
 

 
 

Figure 1: The Centers in Continental US Airspace. 
 
Uncertainty bounds around these nominal predictions 
were then obtained using the standard state covariance 
propagation model driven by the covariance of 
departure counts. Day-to-day variations about the 
average departure counts are assumed to be zero-mean 
Gaussian random variables. Results are presented for 

another day of traffic data (other than the four days 
used in LDSM) to show that these counts lie within the 
confines of the mean aircraft counts predicted by the 
LDSM and uncertainty bounds generated by the 
covariance propagation technique. The main strength of 
the LDSM described here is that all the analytical tools 
available for analysis of linear dynamic systems can be 
applied to this model. 
 
LDSM is described in Section 2.  Section 3 describes 
the data from multiple days used for constructing and 
evaluating the model. Section 4 describes the modeling 
of the state transition matrix using flow transition 
probabilities while section 5 describes the model for the 
departures. In Section 6, the uncertainty bounds 
generated using the model are provided. Finally, 
concluding remarks are made in Section 7. 
 

2. Linear Dynamic System Model 
 
A linear dynamic systems model for the air traffic in the 
NAS is developed in this section. This model can be 
used for predicting traffic count, which is the number of 
aircraft in a given Center, in the 22 Centers in the 
United States and one international region. The 
resulting traffic count forecast, which is a measure of 
future demand, can then be balanced against the 
available capacity using traffic flow management.  
 
The number of arrivals (landings) and the number of 
aircraft leaving a Center in an interval of time, T∆ , are 
assumed to be proportional to the number of aircraft in 
the Center at the beginning of the interval. Following 
the notation in Figure 2 and using the principle of 
conservation of flow (analogous to the principle of 
mass balance in a control volume) in a Center, the 
number of aircraft in Center at the next instant of time, 

1+k , can be related to the number of aircraft in the 
Center at the current instant of time, , via the 
difference in number of aircraft that came into the 
Center and the number of aircraft that that left the 
Center as follows. 
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The fractions ijβ s’ and jiβ s’ are obtained as 
transition probabilities in Reference 5.  The departures 
within Center i  are denoted by . For the purpose )(kdi

 
American Institute of Aeronautics and Astronautics 

2



of modeling, these departures can be split into two 
components- a deterministic one and a stochastic one. 
The deterministic portion of the departures  can 
be computed from filed flight plans and from historical 
departure data. For example,  can be set to the 
average departure count derived from historical data.  

)(kui

)(kui

 
The stochastic component of the departures, , 
can be modeled by assuming a suitable distribution 
such as, a Gaussian or a Poisson distribution. In such a 
model, , which can also be obtained from 
historical data, represents the expected variation around 
the deterministic component. 

)(kwi

)(kwi

 
Figure 2: The components of aircraft flow contributing 
to the traffic count in a given Center.  
 
The discrete system in Equation (1) can be rewritten in 
the standard State Space notation as:  
 
 x(k +1) = A(k)x(k) + B(k)u(k) + C(k)w(k) (2)  
 
where,  
•  denotes the time instant defined by k Tk∆ , with 

∆T being the sampling interval. In the earlier work 
in Reference 5, it has been shown that a 10-minute 
sampling interval accurately approximates Center 
aircraft count. This sampling interval has also been 
used for generating the results presented in this 
paper; 

• x(k)=  is the state vector with the 
number of aircraft in the Centers at time 

1x (k),... Nx (k)[ ]
k  as its 

elements; 
• =  is the control vector with 

the number of aircraft departing (taking off) from 
the Centers as its elements; 

u k( ) 1u (k),... Nu (k)[ ]

]• =  is a vector for modeling 
departure uncertainties;  
w k( ) 1w (k),... Nw (k)[

• A k( ) is the state transition matrix that contains the 
information of how flights transition from one 
Center to the other Center.  

 
The elements of the state transition matrix A  are given 
by: 
 

NjNiji

a ijij

,,1;,,1;
;
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where, 23=N  is the number of Centers including 
one for the international region. The off-diagonal terms 

 represent the fraction of aircraft transitioning 

from Center to the Center at time 

)(kaij

i j k . This quantity 
can be calculated from historical data and will be 
shown to be slowly varying over time.  
 
The diagonal terms can be calculated as:  
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These terms represent the fraction of the aircraft that 
remained in the Center  during the  time step.  i thk
 
Although, a special case of the above formulation with 
B = 0 and C = I with w k( ) being a Poisson random 
variable were used in Reference 5, the general model 
with B permits analysis such as, the sensitivity of the 
traffic flow to variations in the departure rates. For the 
remainder of this paper, B = I and  are assumed, 
where  is the identity matrix. 

IC =
I

  
3. Data Used 

 
Behavior of the LDSM was studied using real traffic 
data for four consecutive days from May 06, 2003 
through May 09, 2003. Traffic data consisting of tracks 
and flight plans were recorded at one-minute intervals 
from the data feed provided by the Enhanced Traffic 
Management System (ETMS) [6]. The four days of 
recorded data were processed using the Future ATM 
Concepts Evaluation Tool (FACET) [7]. At each instant 
of time during the 24-hour period, numbers of aircraft 
in the Center, coming into the Center from a 
neighboring Center, leaving the Center for a 
neighboring Center, landing in the Center and taking 
off in the Center were counted for each of the 23 
Centers (22 in U. S. + international). These counts were 
then used for creating the state transition matrix A. The 
LDSM with this state transition matrix was 
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subsequently used for generating time histories of 
traffic count in the Centers. 
 
Traffic count results for the Atlanta Center (ZTL) and 
the New York Center (ZNY) during a 24-hour period, 
obtained using the LDSM driven by May 6, 2003 
departures, are shown in Figure 3. As expected, these 
Centers have two basic modes of operation based on the 
time of the day. There is relatively little activity during 
the nighttime hours and a lot of activity during the 
daytime hours. Traffic increases rapidly during the 
beginning of the day and then settles down to a 
relatively high level for most of the day until the 
nighttime hours.  Observe from Figure 3 that different 
Centers tend to get busy at different times of the day 
based on their time zones.  
 
 

 
Figure 3: Traffic count in selected Centers in the US 
across a 24-hour period.  
 
Subsequent sections describe how the data were used 
for examining the properties of LDSM in forecasting 
nominal traffic count and uncertainty bounds about it. 
 

4. Flow Matrix Modeling   
 
This section examines two aspects of the LDSM- 1) the 
impact of maintaining state transition matrices constant 
over several intervals of T∆ , during the 24-hour 
period, on modeling errors and 2) the effect of using 
state transition matrices based on historical data for 
modeling today’s traffic counts. 
 
In Section 2, the state transition matrix  was 
constructed using fractions of aircraft crossing Center 
boundaries. Although the absolute number of aircraft 
does change from day-to-day (see: Figure 4), the 
benefit of using fractions is that they do not change 
very drastically. Figure 4 shows the general behavior of 
Atlanta Center (ZTL) traffic across multiple days.  
Observe that the traffic patterns are quite similar but the 

number of aircraft at any given time of day does change 
from day-to-day. 

A

 
Examination of the state transition matrix  shows that 
it is diagonally dominant with a large fraction of the 
aircraft staying within each Center between 

A

k  and 
k + 1 time steps.  For larger sampling rates, the 
diagonal dominance is diminished with a large fraction 
of the aircraft leaving the Center. The off-diagonal 
terms increase because more aircraft arrive in the 
Center during the larger sampling time interval.  
 
 

 
Figure 4: Atlanta Center traffic across multiple days 
 
 
The slow moving nature of the underlying dynamics of 
flow and the diagonally dominant nature of  suggest 
that traffic count in the Centers can be modeled via a 
slowly varying  matrix. For example, Figure 5 shows 
the effect of using A matrices averaged over one 
through 24-hour intervals in modeling traffic count in 
the Atlanta Center (ZTL). Note that although state 
transition matrices are averaged over long time 
intervals, the LDSM is updated at every integration 
time step for generating the time histories. 

A

A
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Figure 5: ZTL:  Predicted aircraft counts with u being 
updated  at every iteration, but A being updated every 
24/12/8/4/3/2/1 hours. 
 
In order to study the impact of state transition matrix 
aggregation interval on the modeling errors (differences 
between the actual counts and those predicted by 
LDSM), forecasting of traffic counts in the 23 Center 
airspaces were done with the state transition matrix 
averaged over several different intervals. Thus, for one-
hour aggregation interval, 23 state transition matrices 
were used over the span of 24 hours while for 24-hour 
aggregation interval, a single state transition matrix was 
for used. In each of these nine instances (1-hour though 
24-hour aggregation), modeling errors were computed 
for the 24-hour day by taking the difference between 
the aircraft counts predicted by LDSM and the actual 
aircraft counts determined from recorded data. Figure 6 
shows the normalized mean of the modeling errors as a 
function of the aggregation interval for the Atlanta 
Center using May 7, 2003 data. Circles on the graph 
show the computed data points. The modeling errors 
are normalized by expressing them as a percentage of 
the mean actual aircraft count. Normalized mean of the 
modeling errors is defined as: 
 

µN =
µe

µ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 100      (5) 

 
where, µe  is the mean of the modeling errors and µ  is 
the mean of the actual aircraft counts.  For May 7, 2003 
data, the mean traffic in the Atlanta Center was 175 
aircraft. This figure shows that the normalized mean of 
the modeling errors, which represents the bias, is fairly 
small and does not change substantially with the 
aggregation interval. The normalized standard deviation 
for the same data is shown in Figure 6.  Normalized 
standard deviation of the modeling errors is defined as: 
 

σ N =
σ e

µ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 100     (6) 

 
where σ e  is the standard deviation of the modeling 
errors and µ  is the mean of the actual aircraft count, 
which for Atlanta Center on May 7, 2003 was 175. 
Observe from Figure 6 that the standard deviation of 
the modeling errors grows with increasing aggregation 
interval.  The mean and standard deviation trends in the 
Atlanta Center on May 6, 2003 and May 9, 2003 were 
found to be very similar to those in Figure 6. The trends 
were quite different for May 8, 2003 data in that the 
mean and the standard deviation of the modeling errors 
monotonically increase with increasing aggregation 
interval. For the 24-hour aggregation interval, the 

normalized mean and normalized standard deviation of 
the errors were found to be –13.78 and 19.71 with the 
mean being 204 aircraft. Closer examination of the 
actual traffic data for May 8, 2003 revealed that Atlanta 
Center experienced a significantly greater traffic 
variation as a function of time of day compared to the 
three other days. 
 

 
 
Figure 6:  Normalized mean and standard deviation of 
the modeling errors as a function of state transition 
matrix aggregation interval. 
 
Mean aircraft counts, µ , mean of modeling errors, µe , 
normalized mean of the modeling errors, µN , standard 
deviation of the modeling errors, σ e , and normalized 
standard deviation of the modeling errors, σ N , for all 
the 23 Centers on May 7, 2003 with the state transition 
matrix aggregated over one-hour interval are 
summarized in Table 1. This table shows that the 
normalized mean of the errors are less than 2% for all 
the Centers. The normalized standard deviation is less 
than 9 for all the Centers except for Hawaii (ZHN), 
where it is 13. Note that mean traffic count in Honolulu 
Center (ZHN) is 19, which is small compared to other 
Centers.  Small errors between the aircraft counts 
predicted by LDSM and actual counts appear to be 
significant due to fewer aircraft in that Center. 
 
Table 1: Summary of modeling error statistics for 23 
Centers on May 7, 2003 with state transition matrix 
aggregation interval of one-hour.  
 
 µ  µe  µN  σ e  σ N  
ZAB 132 1.52 1.15 8.10 6.13 
ZAU 181 1.88 1.04 11.72 6.48 
ZBW 131 1.72 1.31 8.53 6.51 
ZDV 145 1.04 0.71 7.86 5.42 
ZDC 192 3.01 1.57 12.5 6.51 
ZFW 153 1.35 0.88 9.46 6.18 
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ZHU 135 2.13 1.58 8.00 5.92 
ZID 154 1.37 0.89 10.96 7.12 
ZJX 163 2.03 1.24 8.12 4.98 
ZKC 155 1.50 0.97 7.52 4.85 
ZLA 168 1.78 1.06 9.88 5.88 
ZLC 102 0.59 0.57 7.33 7.19 
ZMA 84 1.48 1.76 5.85 6.97 
ZME 129 1.09 0.84 10.74 8.32 
ZMP 150 2.12 1.42 9.79 6.52 
ZNY 121 1.32 1.09 7.90 6.53 
ZOA 114 1.67 1.47 7.08 6.21 
ZOB 167 1.41 0.85 10.58 6.33 
ZSE 90 0.99 1.10 5.34 5.93 
ZTL 175 2.62 1.50 10.58 6.05 
ZAN 42 0.13 0.31 2.72 6.47 
ZHN 19 0.31 1.61 2.47 13.02 
INTL 838 4.72 0.56 20.17 2.41 
 
These same statistics for the aggregation interval of 12 
hours is summarized in Table 2.  Comparing Table 2 to 
Table 1, it is easily seen that the mean and the standard 
deviation values for all the Centers with 12-hour 
aggregation interval are about twice as much as those 
with one-hour aggregation.  
 
Table 2: Summary of modeling error statistics for 23 
Centers on May 7, 2003 with state transition matrix 
aggregation interval of 12 hours.  
 
 µ  µe  µN  σ e  σ N  
ZAB 132 2.17 1.64 17.24 13.06 
ZAU 181 4.04 2.23 20.02 11.06 
ZBW 131 3.59 2.74 13.27 10.13 
ZDV 145 1.32 0.91 21.25 14.65 
ZDC 192 4.54 2.37 22.37 11.65 
ZFW 153 2.36 1.54 22.32 14.59 
ZHU 135 3.21 2.38 16.10 11.93 
ZID 154 2.80 1.82 15.23 9.89 
ZJX 163 2.75 1.69 16.28 9.99 
ZKC 155 2.13 1.38 19.41 12.52 
ZLA 168 3.91 2.33 14.82 8.82 
ZLC 102 0.81 0.79 15.98 15.67 
ZMA 84 2.17 2.58 8.61 10.25 
ZME 129 2.45 1.90 16.28 12.62 
ZMP 150 4.59 3.06 17.91 11.94 
ZNY 121 2.48 2.05 13.05 10.78 
ZOA 114 3.54 3.11 11.52 10.11 
ZOB 167 3.77 2.26 27.08 16.22 
ZSE 90 2.10 2.34 9.90 11.00 
ZTL 175 3.56 2.03 21.60 12.34 
ZAN 42 0.75 1.78 9.35 22.25 
ZHN 19 0.63 3.33 3.48 18.31 
INTL 838 13.40 1.60 109.64 13.08 
 

To determine the performance of LDSM when the state 
transition matrix is based on past data and departure 
rates are from current data, simulations were done using 
May 6, 2003 and May 7, 2003 data to predict May 8, 
2003 flow (averaged over 24-hours). Although the fit is 
worse and there is a lag in the behavior, the fit is still 
sufficient to be able to predict Center overloads and 
permit planning for resource management purposes. 
 

 
Figure 7: ZTL:  Predicted aircraft counts with u being 
updated  every iteration, but using a historical A from 
previous day (or two days ago) data averaged across 
24-hours. 
 
It is thus clear that one can use a block-averaged 
version of  for modeling aggregate flow behavior. A
 

5. Modeling of Departures from Airports  
 
Discussions in the previous sections assumed that the 
departures within each Center are known a-priori. Since 
a significant amount of air traffic in high altitude 
airspace is airline traffic, the general traffic trends can 
be expected to remain unchanged from day-to-day 
because of fixed airline schedules.  However, as seen in 
Figure 4, the traffic count in the Centers does change 
from one day to the other because of convective 
weather and unavailability of some NAS resources. 
Weekday and weekend traffic trends also result in 
different traffic counts in the Centers. 
 
As described earlier in Section 2, LDSM allows for 
daily variations and other disturbances by using a 
deterministic component of the departures, u(k), and a 
stochastic component of the departures, w(k). The 
deterministic component could be the nominal estimate 
from all available data (e.g., historical departure data or 
proposed flight plans) while the stochastic component 
could be the uncertainty about the nominal estimate, 
which is also derived from the historical departure data. 
This approach implicitly accepts the fact that exact 
prior knowledge of the departures is difficult, therefore 
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the traffic count computed using LDSM would have 
some uncertainty. 
 
In Reference 5, departures, , were modeled as 
samples from a single Poisson distribution. This 
approach can be generalized by modeling departures 
from several Poisson distributions over the 24-hour 
period. In order to take advantage of the many analysis 
techniques that are available for linear system models 
driven by Gaussian inputs, an alternative approach of 
using the mean number of departures as the 
deterministic part of the input and variation about this 
mean as the stochastic part of the input (modeled as a 
Gaussian random variable) has been used in this paper. 
The mean number of departures can be computed from 
historical data as: 

)(kd
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k DL
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)(µ     (7) 

where  is the number of days and is the number 

of departures from Center i  on day 

D
Li

d
L . Figure 9 shows 

the results of driving the LDSM with the mean 
departure counts computed over four days using 
Equation (7). The state transition matrix averaged over 
four days and aggregated over one-hour periods, and an 
integration step size of four minutes were used for the 
results shown in Figure 9. This figure also shows actual 
traffic count, computed from recorded traffic data (not 
model-based), for each of the four days. 
 

 
Figure 8: Traffic count in ZFW calculated using mean 
departure counts and state transition matrix averaged 
over one-hour intervals, and actual traffic counts during 
four days in May. 
  
Examination of the traffic count time history, generated 
using mean departure counts, with respect to the actual 
traffic counts in Figure 8 shows that the LDSM-

generated counts approximate the mean traffic counts 
quite well. This figure also shows that the actual traffic 
count on any given day differs from the LDSM-
generated traffic count therefore, uncertainty modeling 
is required to ensure that actual counts lie within the 
range established by these bounds. The mean traffic 
count prediction along with the uncertainty bounds 
about it can then be used for traffic flow management 
decisions.    
 
In order to model the variation about the mean traffic 
count, the standard deviation of the departures can be 
computed from historical departure data as: 
 

( )( )
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The stochastic component of the input w(k) (see: 
Equation (2)) can be modeled with each component 

 as a random variable from the Normal 
distribution with the mean given by Equation (7) and 
the standard deviation given by Equation (8). Note that 
the distribution is assumed to be non-stationary and the 
mean and variance change with time 

)(kwi

k . 
 
The normalized distribution of departures for three 
days- May 6, 2003 through May 8, 2003 is shown in 
Figure 9. The departure distribution was obtained by  
 

 
 
Figure 9:  Probability density function of Atlanta 
Center departures with respect to the mean number of 
departures and its approximation with a Gaussian 
model. 
  
first computing an average traffic count during each 
time interval (10-minutes) using the three days of data 
and then computing the difference of traffic counts for 
each day with respect to the average during each time 
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interval in the 24-hour period. The difference counts for 
the three days were put together in a single dataset for 
creating the histogram. The resulting histogram was 
then normalized with respect to the area under the 
histogram to obtain the probability density function.  
This graph is shown with the ‘x’ symbol in Figure 9. 
The mean and the standard deviation values obtained 
from the dataset were used for fitting a Gaussian 
probability density function, which is marked by the ‘o’ 
symbol in Figure 9. Although, the Gaussian probability 
density function does not fit the actual probability 
density function perfectly, it is a reasonable 
approximation.  It remains to be seen whether the 
approximation would improve if this analysis were 
repeated with several more days (for example, 30 days) 
of traffic data. 
 

6. Modeling Uncertainty Bounds 
 
The process of computing uncertainty bounds about the 
LDSM-based nominal traffic count prediction is 
described in this section. The results presented in the 
previous sections (for example, see Figure 8) were 
obtained using the deterministic part of the input, 
consisting of mean departure counts in the Centers. In 
this section, use of the stochastic part of the input along 
with the LDSM model in Equation (2) in establishing 
uncertainty bounds is discussed. 
 
Assuming w(k) is a vector of discrete time white noise 
sequences with covariance Q(k) in LDSM, given in 
Equation (2), the uncertainty bounds can be obtained in 
terms of the state covariance matrix  using the 
following recursive equation [8]: 

)(kP

 
P(k +1) = A(k)P(k) TA k( )+ C(k)Q(k) TC k( )    (9) 

 
This equation is also used for state covariance 
propagation in the process update step of a Kalman 
Filter [9].  Propagation of the state covariance using 
Equation (9) requires knowledge of the covariance 
matrix Q(k) and the initial state covariance matrix 

. Starting with a null matrix of size )0(P 2323× , the 
diagonal terms of the Q(k) matrix are set to the 
variances of the numbers of takeoffs in the Centers. 
Thus, 
 

( )

( ) jiki

jikq ji

=∀=

≠∀=

σ 2

0,
 (10) 

 

( )kiσ 2  is the variance in the number of takeoffs in the 

Centers computed using Equation (8). 

To initiate the covariance propagation process, the state 
covariance matrix  is initialized to a null matrix. 
The time histories of average traffic counts for the Fort 
Worth Center, obtained using LDSM in Equation (2), 
and 

)0(P

σ3  bounds, obtained using the covariance 
propagation Equation (9), are shown in Figure 10. The 
average traffic count is shown via the square symbol in 
Figure 9. This figure also shows the traffic count 
history in the Fort Worth Center on October 1, 2003, 
which is shown with the circle symbol in Figure 10. 
Observe from the figure that the October 1, 2003 traffic 
counts lie within the uncertainty bounds ( σµ 3± ) 
obtained using LDSM based on May 6, 2003 through 
May 9, 2003 data.   
 

 
Figure 10: Model-based average traffic counts and 
uncertainty bounds in the Fort Worth Center. 
  
Although results have only been shown for the Fort 
Worth Center, the model-based traffic counts in other 
Centers were found to be of similar quality. These 
results illustrate that covariance propagation based on 
LDSM adequately describes the statistical variation 
seen in the day-to-day actual traffic flows. 

 
7. Conclusions 

 
We have described a class of linear time varying 
models to represent traffic flow for developing sound 
strategic TFM decisions. The linear dynamic traffic 
flow system model with a slowly varying transition 
matrix and Gaussian departure representation was 
shown to adequately represent traffic behavior at the 
Center-level. Furthermore, the method for computing 
uncertainty bounds around nominal traffic counts in the 
Centers was described. Numerical examples were 
presented using actual traffic data from four different 
days to demonstrate the model characteristics. The 
advantages of this class of models are: (1) Unlike 
trajectory-based models, these models are less 
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susceptible to uncertainties in the system, (2) The 
model order is reduced by several orders of magnitude 
from 5000 aircraft trajectories to 23 states at any given 
time, and (3) A host of tools and techniques of modern 
system theory can be applied to this model because of 
its form. The capabilities of this class of models for 
strategic traffic flow management will be explored in 
the future. 
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